The University of Trinidad and Tobago UTT, Trinidad and Tobago
* Corresponding author
The University of Trinidad and Tobago UTT, rinidad and Tobago

Article Main Content

This work proposes a fuzzy logic sliding mode control based on MOPSO optimization to increase voltage stability, particularly during load variations, while also combining FC-battery storage systems. The controller makes advantage of the converters' existing capabilities to reduce voltage fluctuations and improve system efficiency in a number of ship operating modes, including transient loads, without the need for additional equipment like as DC choppers or passive/active filters. By minimising voltage variation under load fluctuations and other influencing variables, the MOPSO develops control orders to manage load distribution among the FC and DG battery storage systems. The suggested control approach is compared to traditional sliding mode and PI controllers in terms of performance. According to the findings, the novel approach can improve battery power smoothing, steady state voltage management, and stable and speedy control performance.

References

  1. Chen L, Tong Y, Dong Z. Li-Ion battery performance degradation modeling for the optimal design and energy management of electrified propulsion systems. Energies. 2020; 13(2): 16-23.
     Google Scholar
  2. Nuchturee C, Li T, Xia H. Energy efficiency of integrated electric propulsion for ships-a review. Renew. Sustain. Energy Rev. 2020; 134(4): 110-121.
     Google Scholar
  3. Fang S, Wang Y, Gou B, Xu Y. Toward future green maritime transportation: an overview of seaport microgrids and all-electric ships. IEEE Trans. Veh. Technol. 2020; 69(1): 207-219.
     Google Scholar
  4. Anwar S, Zia MYI, Rashid M, Rubens GZD, Enevoldsen P. Towards ferry electrification in the maritime sector. Energies. 2020; 13(3): 65-73.
     Google Scholar
  5. Koumentakos AG. Developments in electric and green marine ships. Appl. Syst. Innov. 2019; 2(1): 34-41.
     Google Scholar
  6. Banaei M, Ghanami F, Rafiei M, Boudjadar J, Khooban MH. Energy management of hybrid diesel/battery ships in multidisciplinary emission policy areas. Energies. 2020; 13(4): 61-79.
     Google Scholar
  7. Malinowski M, Kazmierkowski MP, Trzynadlowski AM. A comparative study of control techniques for PWM rectifiers in AC adjustable speed drives. IEEE Trans. Power Electron. 2003; 18(2): 1390-1396.
     Google Scholar
  8. Sulligoi G, Tessarolo A, Benucci V, Baret M, Rebora A, Taffone A. Modeling, simulation, and experimental validation of a generation system for medium-voltage dc integrated power systems. IEEE Trans. Ind. Appl. 2010; 46(4): 1304-1310.
     Google Scholar
  9. Jin Z, Sulligoi G, Cuzner R, Meng L, Vasquez JC, Guerrero JM. Next generation shipboard dc power system: introduction smart grid and dc microgrid technologies into maritime electrical netowrks. IEEE Electrific. Mag. 2016; 4(2): 45-57.
     Google Scholar
  10. Ghimire P, Park D, Zadeh MK, Thorstensen J, Pedersen E. Shipboard electric power conversion: system architecture, applications, control, and challenges. IEEE Electrification Mag. 2019; 7(4): 6-20.
     Google Scholar
  11. Zadeh MK, Gavagsaz-Ghoachani R, Martin JP, Pierfederici S, Nahid-Mobarakeh B, Molinas M. Discrete-Time tool for stability analysis of dc power electronics-based cascaded systems. IEEE Trans. Power Electron. 2016; 32(1).
     Google Scholar
  12. Kim SY, Choe S, Ko S, Sul SK. A naval integrated power system with a battery energy storage system: fuel efficiency, reliability, and quality of power. IEEE Electrific. Mag. 2015; 3(2): 22-33.
     Google Scholar
  13. Sattler G. Fuel cells going on-board. Journal of Power Sources. 2000; 86(1): 61-67.
     Google Scholar
  14. Hasanzadeh A, Edrington CS, Stroupe N, Bevis T. Real-time emulation of a high-speed microturbine permanent-magnet synchronous generator using multiplatform hardware-in-the-loop realization. IEEE Trans. Ind. Electron. 2014; 61(6): 3109-3118.
     Google Scholar
  15. Hou J, Sun J, Hofmann HF. Mitigating power fluctuations in electric ship propulsion with hybrid energy storage system: design and analysis. IEEE J. Ocean. Eng. 2017; 43(1): 93-107.
     Google Scholar
  16. Chua LWY, Tjahjowidodo T, Seet GGL, Chan R. Implementation of optimization-based power management for all-electric hybrid vessels. IEEE Access. 2018; 6(74): 339-354.
     Google Scholar
  17. Hou J, Sun J, Hofmann HF. Mitigating power fluctuations in electric ship propulsion with hybrid energy storage system: design and analysis. IEEE J. Ocean. Eng. 2017; 43(3): 93-107.
     Google Scholar
  18. Mardani MM, Khooban MH, Masoudian A, Dragicevic T. Model predictive control of dc-dc converters to mitigate the effects of pulsed power loads in naval dc microgrids. IEEE Trans. Ind. Electron. 2018; 66(7): 5676-5685,
     Google Scholar
  19. Xiao Q, Chen L, Jia H, Wheeler PW, Dragicevic T. Model predictive control for dual active bridge in naval dc microgrids supplying pulsed power loads featuring fast transition and online transformer current minimization. IEEE Trans. Ind. Electron. 2019; 67(6): 5197-5203.
     Google Scholar
  20. Vu TV, Gonsoulin D, Diaz F, Edrington CS, El-Mezyani T. Predictive control for energy management in ship power systems under high-power ramp rate loads. IEEE Trans. Energy Convers. 2017; 32(2): 788-797.
     Google Scholar
  21. Skjong E, Suul JA, Rygg A, Johansen TA, Molinas M. System-wide harmonic mitigation in a diesel-electric ship by model predictive control. IEEE Trans. Ind. Electron. 2016; 63(7): 4008-4019.
     Google Scholar
  22. Skjong S, Pedersen E. Nonangular mpc-based thrust allocation algorithm for marine vessels. a study of optimal thruster commands. IEEE Trans. Transp. Electrification. 2017; 3(3): 792-807.
     Google Scholar
  23. Utkin VI. Sliding mode control design principles and applications to electric drives. IEEE Transactions on Industrial Electronics. 1993; 40(1): 23-36.
     Google Scholar
  24. Alli H, Yakut O. Fuzzy sliding-mode control of structures. Engineering Structures. 2005; 27(2): 277-284.
     Google Scholar
  25. Mardani MM, Khooban MH, Masoudian A, Dragicevic T. Model predictive control of dc-dc converters to mitigate the effects of pulsed power loads in naval dc microgrids. IEEE Trans. Ind. Electron., 2018; 66(7): 5676-5685.
     Google Scholar
  26. Vu TV, Gonsoulin D, Diaz F, Edrington CS, El-Mezyani T. Predictive control for energy management in ship power systems under high-power ramp rate loads. IEEE Trans. Energy Convers. 2017; 32(2): 788-797.
     Google Scholar
  27. Skjong E, Suul JA, Rygg A, Johansen TA, Molinas M. System-wide harmonic mitigation in a diesel-electric ship by model predictive control. IEEE Trans. Ind. Electron. 2016; 63(7): 4008-4019.
     Google Scholar
  28. Othman MB, Reddy NP, Ghimire P, Zadeh MK, Anvari Moghaddam A, Guerrero MJ. A hybrid power system laboratory: testing electric and hybrid propulsion. IEEE Electrification Mag. 2019: 7(4): 89-97.
     Google Scholar
  29. Cortes P, Rodriguez R, Antoniewicz P, Kazmierkowski M. Direct power control of an after using predictive control. IEEE Trans. Power Electron. 2008; 23(5): 2516-2523.
     Google Scholar
  30. Shan Y, Hu J, Chan KW, Fu Q, Guerrero JM. Model predictive control of bidirectional dc-dc converters and ac/dc interlinking converters a new control method for pv-wind-battery microgrids. IEEE Trans. Sustain. Energy. 2018; 10(4): 1823-1833.
     Google Scholar
  31. Chen Z, Shan C, Zhu H. Adaptive fuzzy sliding mode control algorithm for a non-affine nonlinear system. IEEE Transactions on Industrial Informatics. 2007; 3(4): 302-311.
     Google Scholar
  32. Iglesias E, Garcia Y, Sanjuan M, Camacho O, Smith C. Fuzzy surface-based sliding mode control. ISA Transactions. 2007; 46(2): 73-83.
     Google Scholar