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ABSTRACT

A Systematic Framework for Reconciling Solar
Energy Production Models with
Operational Data: A Literature Synthesis and
Methodology Development

Sahil Shah'-*, Aravind Reddy Boozula’, Radhika Girish Lampuse’,

and Jigar Janakbhai Thakkar®

The growing deployment of utility-scale photovoltaic (PV) systems
has heightened the importance of accurate energy yield predictions for
financial planning and operational management. However, a persistent
gap exists between predicted and actual performance, creating significant
challenges for project developers, investors, and operators. This paper
presents a comprehensive analysis of the performance gap phenomenon
in solar PV systems through a systematic review of current literature
and industry practices. We examine the primary sources of discrepancy
between energy production models and operational data, including resource
assessment uncertainties, system loss characterization, and operational
factors. Building on this analysis, we develop a structured framework
for reconciling predictions with real-world performance that integrates
statistical approaches for uncertainty quantification with methodologies
for model calibration. The proposed framework enables more accurate
performance assessments through the systematic identification and
correction of modeling biases across different temporal scales and operating
conditions. This research contributes to improved risk assessment in PV
project development and advances modeling methodologies by providing
practitioners with a practical approach to align predictive models with
operational realities, ultimately enhancing the reliability of financial models
and performance guarantees in the solar energy sector.
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1. INTRODUCTION

Photovoltaic (PV) systems have emerged as a cor-
nerstone of global renewable energy strategies, with
utility-scale installations experiencing particularly rapid
growth over the past decade. The International Energy
Agency reports that solar PV capacity has increased
more than 20-fold since 2010, with utility-scale systems
making up approximately 70% of new installations [1],
[2]. This accelerated deployment has intensified the need
for accurate energy yield predictions, as these forecasts
directly influence investment decisions, power purchase
agreements, and operational strategies [3].

Despite significant advancements in modeling tech-
niques, a persistent gap remains between predicted and

actual performance of PV systems. This “performance
gap”—defined as the discrepancy between modeled energy
predictions and operational results—represents a critical
challenge for the solar industry [4]. The concept of per-
formance gaps has been recognized across energy systems,
with early investigations by Bordass et al. [5] establishing
that significant disparities between predicted and actual
energy performance are common in complex systems.
Recent studies have documented mean absolute errors
ranging from 3% to 8% in annual energy predictions,
with seasonal variations often exceeding 10% [6]. These
deviations occur despite increasingly sophisticated mod-
eling tools, suggesting underlying challenges in accurately
capturing the complex interactions between equipment
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performance, environmental conditions, and operational
realities.

The consequences of these prediction errors extend
beyond simple accounting discrepancies. Project financ-
ing relies heavily on energy yield assessments, with debt
service coverage ratios and investment returns calculated
based on predicted generation profiles [3]. Reich et al.
[7] demonstrated that the target performance ratios used
in financial models often exceed 90%, setting expecta-
tions that may be unrealistic given real-world operational
conditions. Financial stakeholders typically apply confi-
dence intervals (P50/P90 values) to manage uncertainty,
but these statistical approaches assume underlying mod-
eling methodologies are free from systematic biases—an
assumption increasingly questioned by operational data
[8]. As the industry continues to mature and profit margins
tighten, improving forecast accuracy has become essential
to reducing financing costs and ensuring long-term project
viability.

Several factors contribute to the observed performance
gaps. Solar resource assessment—the foundation of energy
yield predictions—remains subject to uncertainty from
both measurement limitations and the inherent variability
of solar radiation [9]. Mondol et /. [10] identified that even
high-quality solar radiation models can introduce errors
of 4%—-6% in energy yield calculations due to spatial and
temporal resolution limitations. Meng et al. [1 1] analyzed
246 identical rooftop PV systems and found surprising
variability in performance even among systems with nearly
identical designs and locations, highlighting the challenges
in accounting for all influential factors. Loss factors such
as soiling, shading, and system availability are frequently
estimated based on rules of thumb rather than site-specific
assessments [12]. Moreover, long-term degradation rates,
which significantly impact lifetime project performance,
are often based on limited field data that may not represent
current technology or installation practices [13]. Jordan
and Kurtz [14] conducted a landmark analytical review of
PV degradation rates, finding median rates of 0.5%—0.6%
per year but with substantial variation across technologies
and climates that is often overlooked in modeling.

The solar industry has responded with increasingly
standardized approaches to performance modeling and
validation. Measurement and reporting protocols have
been developed to ensure consistency in data collection
and analysis [15]. Technical due diligence methodologies
have evolved to incorporate more rigorous validation pro-
cedures and uncertainty assessments [9]. King et al. [4]
developed one of the most influential array performance
models that continues to underpin many modern simu-
lation tools, though adaptations for newer technologies
remain ongoing. However, these advances have primar-
ily focused on procedural standardization rather than
addressing the underlying causes of systematic modeling
errors or developing robust frameworks for reconciling
predictions with operational reality.

Recent research has begun exploring more sophisti-
cated approaches to aligning modeled and operational
performance. Yagli et al. [16] proposed sequential recon-
ciliation techniques to improve forecasting accuracy by
systematically adjusting predictions based on observed
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patterns. Zuhaib et al. [17] conducted comprehensive
performance analysis of utility-scale solar farms that
incorporated both physical and environmental factors,
demonstrating the importance of holistic approaches to
performance assessment. These advances suggest opportu-
nities to move beyond static modeling approaches toward
dynamic frameworks that evolve throughout a project’s
operational life.

This paper aims to address critical gaps in current
practice by developing a comprehensive framework for
analyzing and reconciling differences between modeled
predictions and operational performance of PV systems.
Through a systematic review of current literature and
industry practices, we examine the primary sources of
performance discrepancies, evaluate existing methodolo-
gies for model validation and calibration, and propose a
structured approach for improving prediction accuracy.
The research focuses specifically on utility-scale PV instal-
lations, where performance gaps have the most significant
financial implications and where operational data collec-
tion is typically more robust.

The remainder of this paper is structured as follows: Sec-
tion 2 presents a comprehensive literature review exploring
the historical development of PV performance modeling,
current understanding of performance gaps, and previous
reconciliation attempts. Section 3 outlines our method-
ology for analyzing performance gaps and developing a
reconciliation framework. Section 4 examines key sources
of discrepancy between predicted and actual performance,
categorizing them into physical, modeling, and operational
factors. Section 5 introduces our proposed framework
for reconciling models with operational data, including
validation approaches and implementation considerations.
Finally, Section 6 summarizes our conclusions and identi-
fies directions for future research.

2. LITERATURE REVIEW

2.1. Historical Development of PV  Performance

Modeling

The evolution of photovoltaic (PV) performance mod-
eling has paralleled the industry’s growth from specialized
niche applications to mainstream power generation. Early
modeling approaches in the 1980s and 1990s primarily
focused on simple correlations between solar irradiance
and power output, with limited consideration of environ-
mental factors or system losses [9]. These rudimentary
models provided reasonable estimates for small, well-
maintained systems but proved inadequate as commercial
and utility-scale installations expanded.

The early 2000s saw significant advancements in
modeling sophistication. Stein and Klise [9] catego-
rized PV performance models into three generations:
first-generation models using constant efficiency val-
ues, second-generation models incorporating temperature
corrections and basic loss factors, and third-generation
models featuring detailed component-level simulations
with comprehensive loss analyses. This evolution reflected
growing recognition of the complex interactions between
equipment specifications, environmental conditions, and
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system configuration that influence actual performance.
De Soto et al. [18] made significant contributions
to second-generation models by improving the five-
parameter model and validating it against measured data,
demonstrating substantial accuracy improvements over
earlier approaches.

Current industry-standard modeling tools integrate
multiple physical models with extensive databases of
component specifications, historical weather data, and
empirical loss factors. According to Kurtz et al. [3], these
sophisticated platforms have substantially improved base-
line accuracy but still struggle with site-specific variations
and dynamic operational conditions. The fundamental
challenge has shifted from basic modeling capability to
accurately capturing the myriad factors that create dispar-
ities between modeled and measured performance. King
et al. [4] established a comprehensive photovoltaic array
performance model at Sandia National Laboratories that
became foundational for modern simulation tools, partic-
ularly in accounting for spectral and angular effects often
overlooked in simplified models.

2.2. Performance Gap Characterization and Measurement

The “performance gap” in PV systems refers to discrep-
ancies between predicted and actual energy production.
While the concept appears straightforward, methodologies
for quantifying and characterizing this gap vary consid-
erably across the literature. Van Dronkelaar ef al. [19]
established a theoretical framework for performance gap
analysis in building energy systems that has since been
adapted to PV applications, emphasizing the distinction
between model inadequacy (systematic errors in the model
structure), specification gap (differences between design
and as-built conditions), and operational deviation (dif-
ferences between assumed and actual operation). Burman
et al. [20] further advanced this framework by propos-
ing measurement and verification protocols specifically
designed to address the credibility gap in energy perfor-
mance, providing a methodological approach applicable to
PV systems.

Harrison and Jiang [6] conducted one of the most com-
prehensive investigations of PV performance gaps using
dynamic simulation modeling. Their case study demon-
strated annual performance deviations of 5%—7% between
predicted and measured output, with seasonal variations
exceeding 12% during winter months. The study identified
irradiance data quality, snow losses, and inverter perfor-
mance modeling as primary contributors to the observed
discrepancies. Reich et al. [7] questioned whether perfor-
mance ratios above 90% are realistic in practice, finding
that even well-designed systems rarely achieve such values
consistently due to unavoidable real-world losses. Impor-
tantly, they found that conventional adjustment factors
applied in commercial modeling tools failed to adequately
account for these site-specific variations.

More recently, Meng et al. [11] analyzed an unprece-
dented dataset of 246 identical rooftop PV systems,
providing unique insights into performance variability
even under nominally identical conditions. Advanced per-
formance analysis techniques [21] have further enhanced
the ability to diagnose system-specific issues through
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statistical pattern recognition. Their findings revealed pro-
duction differences exceeding 8% among systems with
identical components, orientations, and geographic prox-
imity, highlighting the challenges in predicting individual
system performance even with sophisticated models and
high-quality inputs. The study emphasized the intrinsic
variability in real-world systems that may remain unac-
counted for in even the most advanced deterministic
models.

The IEA Report [8] on PV system yield predictions
established standardized metrics for performance gap
assessment, recommending the decomposition of over-
all deviation into specific categories: resource assessment
error, loss factor estimation error, and operational devi-
ation. This structured approach enables more systematic
identification of error sources and facilitates targeted
improvement of modeling methodologies. The conceptual
framework for performance gap analysis is illustrated in
Fig. 1, which shows the hierarchical breakdown of factors
contributing to discrepancies between predicted and actual
performance across three primary domains.

2.3. Factors Affecting Performance Gap

The literature identifies numerous factors contribut-
ing to the observed performance gap in PV systems.
Sepulveda-Oviedo [13] provided the most comprehen-
sive review of operational factors affecting performance,
categorizing them into environmental factors (soiling,
shading, irradiance variation, temperature), equipment
factors (module degradation, inverter efficiency, mismatch
losses), and operational factors (availability, maintenance
practices, grid interaction).

Solar resource assessment uncertainty remains a fun-
damental contributor to performance gaps. Traditional
modeling approaches rely heavily on typical meteorolog-
ical year (TMY) datasets, which by definition cannot
capture the inter-annual variability of solar resources.
Mondol et al. [10] demonstrated that the choice of solar
radiation model significantly impacts simulation accuracy,
with errors varying by geographic location and temporal
resolution of the data. Stein and Klise [9] demonstrated
that even high-quality TMY data can introduce uncertain-
ties of 3%—5% in annual energy predictions due to natural
climate variations. Mondol et al. [10] demonstrated that
the choice of solar radiation model significantly impacts
simulation accuracy, with errors varying by geographic
location and temporal resolution of the data. More recent
satellite-derived irradiance datasets have improved spatial
resolution but may still contain systematic biases in specific
regions or climatic conditions.

System losses represent another major source of perfor-
mance discrepancy. Deceglie et al. [12] highlighted how
soiling losses alone can account for 2%-6% annual energy
reduction in many environments, with significant seasonal
variations that standard models often fail to capture. The
impact of environmental factors such as dust, humid-
ity, and air velocity on soiling accumulation [22] creates
complex interactions that are difficult to predict using sim-
plified models. The study presented a novel methodology
for extracting soiling loss profiles directly from operational
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Fig. 1. Conceptual framework for peformance gap analysis.

data, demonstrating the potential for improved modeling
through systematic analysis of performance patterns.

Equipment performance deviations from manufac-
turers’ specifications contribute significantly to the
performance gap. Kurtz et al. [3] documented systematic
differences between nameplate ratings and actual field
performance of PV modules, with measured power
output frequently 2%-3% below rated values even before
degradation effects. Driesse et al. [23] analyzed numerous
commercial inverters and found that actual efficiency
curves can diverge significantly from manufacturer
specifications, particularly under non-ideal input condi-
tions. Similarly, inverter efficiency profiles in real-world
conditions often deviate from the idealized curves used in
performance models, particularly during low-irradiance
operation.

Degradation effects represent a particularly challeng-
ing aspect of long-term performance prediction. While
most models incorporate linear degradation assumptions
(typically 0.5%—-0.7% annually), actual degradation pat-
terns exhibit significant variability. Zuhaib et al. [17]
demonstrated that environmental factors such as high
temperatures, humidity, and dust exposure can accelerate
degradation rates, leading to performance ratios declining
faster than predicted in harsh environments. Lindig et al.
[1] established an international collaboration framework
for calculating performance loss rates, revealing signifi-
cant variations in degradation patterns across different
climates and technologies that are rarely captured in stan-
dard modeling approaches. Table | summarizes the typical
magnitudes of performance gap contributions reported in
recent literature, categorized by source of discrepancy and
providing quantitative ranges with supporting references
for each factor.

2.4. Reconciliation Approaches

Recent literature has proposed various approaches to
reconcile the gap between modeled and measured per-
formance. Yagli et al. [160] introduced the concept of
“sequential reconciliation” for solar forecasts, demonstrat-
ing how hierarchical adjustments to predictions based
on observed patterns could significantly improve accu-
racy. This approach builds on earlier work by Yang
et al. [24] on geographical hierarchy in solar forecasting,
which demonstrated that reconciling predictions across
spatial scales improves overall accuracy. While primarily
focused on short-term forecasting, their methodological
framework offers valuable insights for longer-term yield
reconciliation, particularly the importance of preserv-
ing relationships between different temporal aggregation
levels.

Yang et al. [25] explored operational solar forecasting
for real-time markets, developing techniques to continu-
ously update predictions based on observed performance
patterns. The statistical foundations for these hierarchical
reconciliation approaches were established by Hyndman
et al. [26], who developed computational methods for
reconciling forecasts across grouped time series that have
since been adapted to solar applications. Their work high-
lighted the potential for machine learning approaches to
capture complex, non-linear relationships between envi-
ronmental conditions and system performance that may be
overlooked in physics-based models.

The industry has increasingly adopted empirical cor-
rection factors to bridge the gap between models and
measurements. Pless et al. [15] established protocols for
measuring and reporting PV performance that included
methodologies for developing site-specific correction fac-
tors based on operational data. Similarly, Kurtz et al.
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TABLE I: SUMMARY OF PERFORMANCE GAP MAGNITUDES FROM LITERATURE

Source of discrepancy Typical range (% of annual Notes Key references
production)
Solar resource assessment 3%—5% Higher uncertainty in regions with variable climate [91, [10]

Soiling losses 2% 6% Location and climate dependent [12]
Temperature modeling 1%-3% Larger in hot climates [17]
Module rating deviation 2%-3% Initial deviation from nameplate [3]
Degradation rate 0.5%—2% per year Cumulative effect increases with time [14]
Inverter performance 1%-2% Larger at partial loading [23]
Mismatch & wiring 1%-3% Higher in non-optimal layouts [11]
Availability & downtime 0.5%—-3% Dependent on O&M practices [8]
Snow & shading 1%-8% Highly location specific [6]

Evolution of PV Performance Modeling

\
First Generation (1980s-1990s)
*  Simple correlations
e Constant efficiency
e Limited loss factors
J
4 N
Second Generation (2000s-2010s)
‘ *  Temperature corrections
*  Basic loss modeling
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4 )
‘3— Third Generation (2010s-Present)
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e Spectral/ angular effects
L Weather integration )

v

Fig. 2. Evolution of PV performance modeling approaches.

[3] proposed standardized approaches for energy perfor-
mance evaluation that incorporate empirical adjustments
to theoretical models based on measured performance
ratios.

Despite these advances, the literature reveals a persis-
tent need for more systematic, integrated approaches to
performance gap reconciliation. While many studies have
identified specific contributing factors or proposed cor-
rections for individual aspects of performance modeling,
comprehensive frameworks that address multiple sources
of discrepancy within a coherent methodology remain lim-
ited. This gap in the literature provides the foundation for
the present study’s contribution in developing a structured
reconciliation framework. Fig. 2 demonstrates the evolu-
tion of PV performance modeling approaches over three
generations, showing the progression from simple corre-
lations to comprehensive analytical frameworks currently
used in industry practice.

3. METHODOLOGY

3.1. Research Design

This study employs a systematic approach to analyze
performance gaps in utility-scale PV systems and develop
a comprehensive framework for reconciling modeled pre-
dictions with operational data. The research methodology
consists of four interconnected components:

e a structured literature review to establish the cur-
rent state of knowledge

e categorization and analysis of performance gap
sources

e development of a reconciliation framework, and

e case-based validation of the proposed approach

The literature review focused on peer-reviewed journal
articles, technical reports from recognized research insti-
tutions, and industry standards published between 2005
and 2025. Key search terms included “photovoltaic perfor-
mance gap,” “solar energy yield prediction,” “PV model
validation,” and “reconciling solar forecasts.” We prior-
itized studies with quantitative analysis of utility-scale
systems and those providing methodological frameworks
rather than purely case-specific findings. This approach
ensured a comprehensive foundation for understanding
both the technical and methodological aspects of the per-
formance gap phenomenon.

To assess the relative significance of different factors
contributing to performance gaps, we compiled quantita-
tive data from multiple studies, normalizing findings to
consistent metrics (typically percentage of annual energy
yield) where possible. This meta-analysis allowed us to
identify patterns across diverse geographical locations, sys-
tem configurations, and operational conditions, revealing
which factors consistently contribute most significantly to
performance discrepancies.

3.2, Performance Gap Analysis Framework

Our methodology for analyzing performance gaps
builds on the theoretical framework established by Van
Dronkelaar ez al. [19] but extends it specifically for PV
applications. We categorize performance gap sources into
three main domains:

1. Resource Assessment Domain.: Factors related to the
characterization and prediction of solar resource,
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including measurement uncertainties, spatial inter-
polation errors, temporal resolution limitations, and
stochastic variability.

2. System Response Domain: Factors related to how
the PV system converts available solar resource into
electrical energy, including equipment specifications,
physical models, loss characterization, and degrada-
tion patterns.

3. Operational Domain: Factors related to system
operation and maintenance, including availability,
curtailment, control strategies, and maintenance
practices.

This structured categorization enables more systematic
identification of error sources and facilitates targeted
improvement strategies. For each domain, we analyze both
systematic biases (persistent directional errors) and ran-
dom variations (stochastic uncertainties), as these require
different reconciliation approaches.

For quantitative analysis, we adopt the normalized met-
rics recommended by the IEA Report [§], including the
Performance Ratio (PR) for overall system performance
evaluation and specific decomposition metrics for indi-
vidual loss factors. This standardized approach enables
consistent comparison across different studies and system
configurations.

3.3.  Reconciliation Framework Development

The development of our reconciliation framework fol-
lows a modular structure that addresses each performance
gap domain sequentially while preserving the interdepen-
dencies between domains. The framework integrates three
key methodological approaches:

1. Statistical Reconciliation: Adapting the sequential
reconciliation methodology proposed by Yagli et al.
[16] to address temporal hierarchies in performance
data, with extensions to incorporate both short-term
variations and long-term trends.

2. Model Calibration: Systematically adjusting model
parameters based on operational data to minimize
prediction errors, following a Bayesian approach
that updates prior distributions of model parameters
as new data becomes available.

3. Loss Factor Decomposition: Isolating and quan-
tifying specific loss mechanisms from aggregate
performance data, building on the methodology
developed by Deceglie et al. [12] for soiling loss
extraction and extending it to other loss factors.

The framework development process incorporated an iter-
ative design approach, with successive refinements based
on theoretical considerations and practical constraints
identified in the literature. Particular attention was given to
ensuring the framework’s adaptability to different system
configurations, data availability scenarios, and operational
contexts.

3.4. Validation Methodology

While full empirical validation of the proposed frame-
work is beyond the scope of this study, we employ a
case-based validation approach using publicly available
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Fig. 3. Methodological framework overview.

datasets and published case studies. This allows us to eval-
uate the framework’s effectiveness across diverse scenarios
without requiring extensive new field data collection.

The validation methodology involves applying the rec-
onciliation framework to published case studies with
well-documented performance gaps, then comparing the
reconciled predictions with actual measured performance.
We assess improvement using standard statistical met-
rics including Mean Absolute Error (MAE), Root Mean
Square Error (RMSE), and bias metrics such as Mean
Bias Error (MBE). This approach provides a prelimi-
nary validation of the framework while acknowledging the
limitations of using secondary data. Fig. 3 provides an
overview of the methodological framework, showing the
integration of literature review, performance gap analysis,
framework development, and validation components in
a systematic approach to developing the reconciliation
methodology.

4. PERFORMANCE GAP ANALYSIS

4.1. Resource Assessment Domain

The resource assessment domain encompasses factors
related to the characterization and prediction of the solar
resource available to a PV system. Analysis of the liter-
ature reveals several key challenges in this domain that
contribute significantly to performance gaps.

4.1.1. Data Source Uncertainties

The choice of solar resource data represents a funda-
mental source of uncertainty in performance prediction.
Stein and Klise [9] demonstrated that different data sources
can produce variations of 3%-5% in annual energy pre-
dictions for the same location. These variations stem from
different measurement methodologies, spatial resolution,
and underlying models used to derive irradiance values.
Table 11 provides a comprehensive comparison of solar
resource data sources, showing the trade-offs between
accuracy and spatial coverage for different measurement
approaches.
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TABLE II: COMPARISON OF SOLAR RESOURCE DATA SOURCES
Data source type Typical GHI uncertainty Typical GHI uncertainty Key limitations Best applications
(Hourly) (Annual)
Ground measurements 2%-3% 1%-2% Limited spatial coverage, Reference validation,
maintenance requirements high-accuracy applications
Satellite models 4%-8% 3%-5% Biases in cloudy/high-aerosol Utility-scale development,
regions locations without ground data
Reanalysis datasets 8%—15% 5%—8% Coarse resolution, systematic Regional studies, long-term
biases analysis
Typical meteorological N/A 3%—5% Cannot capture inter-annual System design, financial

year

variability modeling

Ground-measured data from high-quality meteorologi-
cal stations historically provided the reference standard for
resource assessment. However, as highlighted by Mondol
et al. [10], even well-maintained ground stations introduce
measurement uncertainties of 2%-3% for global hori-
zontal irradiance (GHI) and 3%-5% for direct normal
irradiance (DNI). Moreover, the limited geographical cov-
erage of ground stations necessitates spatial interpolation,
introducing additional uncertainty for sites distant from
measurement locations.

Satellite-derived datasets have become increasingly
prevalent for utility-scale project development due to
their global coverage and improving accuracy. Compre-
hensive spatial assessment of solar energy potential [27]
has demonstrated both the opportunities and challenges
in resource characterization across diverse geographical
regions. Yang et al. [25] found that modern satellite mod-
els achieve typical uncertainties of 4%-8% for hourly
GHI and 10%-15% for hourly DNI, with improved
performance at larger temporal aggregations. However,
systematic biases persist in regions with frequent cloud
cover, high aerosol content, or snow cover, which can
significantly impact annual energy predictions.

4.1.2. Temporal Representaion Challenges

The temporal representation of solar resource data
introduces another significant source of discrepancy. Most
performance modeling relies on Typical Meteorological
Year (TMY) datasets that synthesize representative condi-
tions rather than predicting actual weather for a specific
period. The IEA Report [8] noted that TMY data intro-
duces inherent uncertainty in annual predictions due to
natural climate variability, typically ranging from 3%—5%
for most locations but exceeding 8% in regions with high
inter-annual variability.

Harrison and Jiang [6] found that the choice of reference
year for resource data explained approximately 40% of
the observed performance gap in their case study. Systems
designed using TMY data may consistently under or over-
perform depending on whether the actual meteorological
conditions diverge from the typical pattern. This effect is
particularly pronounced for short operational periods (1-3
years) before regression to long-term means occurs.

Temporal resolution of resource data represents another
important consideration. Traditional hourly data fails to
capture high-frequency irradiance variations that impact
system performance, particularly for systems with high
DC/AC ratios where clipping losses may be underesti-
mated. Meng et al. [11] demonstrated that sub-hourly

variations can impact annual energy predictions by 1%—
3%, with greater impact for systems employing single-axis
tracking.

4.1.3. Plane-of-Array Translation

Translating horizontal irradiance data to the plane-
of-array (POA) represents another significant source of
uncertainty. Most resource datasets provide global hori-
zontal irradiance, which must be decomposed into direct
and diffuse components and then transposed to the tilted
plane of the PV array. Each step in this process introduces
additional uncertainty.

According to Stein and Klise [9], decomposition models
introduce uncertainties of 5%—15% for hourly diffuse esti-
mates, while transposition models add 2%—5% uncertainty
for fixed-tilt systems. For tracking systems, the uncertainty
increases due to the complexity of modeling the changing
orientation throughout the day. Yang ez al. [25] found that
different transposition models can produce variations of
2%—4% in annual energy predictions for the same horizon-
tal irradiance dataset, with larger variations in locations
dominated by diffuse irradiance.

4.2. System Response Domain

The system response domain encompasses factors
related to how the PV system converts the available solar
resource into electrical energy. Analysis of the literature
reveals several critical factors in this domain that con-
tribute to the performance gap.

4.2.1. Module Performance Characterization

Accurate characterization of PV module performance
under varying operating conditions represents a funda-
mental challenge in performance modeling. Standard Test
Conditions (STC) provide a reference point for module
specifications, but real-world operation rarely matches
these idealized conditions.

Kurtz et al. [10] documented systematic differences
between nameplate ratings and actual field performance of
PV modules, with measured power output frequently 2%
3% below rated values even before degradation effects. This
initial deviation creates a baseline offset in performance
projections that persists throughout system operation.

Temperature modeling introduces additional uncer-
tainty. While the temperature coefficient of power
(typically —0.3% to —0.5% per °C for crystalline silicon
modules) is well-established, accurately predicting module
temperature based on ambient conditions and mounting
configuration remains challenging. Zuhaib et al. [17]
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found that standard temperature models could introduce
errors of 1%—-3% in annual energy predictions, with larger
deviations in locations with extreme temperatures or high
wind variability.

Spectral response represents another source of discrep-
ancy, particularly for thin-film technologies with narrower
spectral sensitivity. Most performance models use simpli-
fied spectral corrections or assume an average Air Mass
modifier. King et al. [4] developed more sophisticated
spectral corrections that improved prediction accuracy, but
these require detailed spectral data rarely available for
commercial projects.

4.2.2. System Losses Characterization

Accurate characterization of system losses represents
a significant challenge in performance modeling. While
some losses can be calculated from first principles (e.g.,
DC wiring losses), others rely heavily on empirical assump-
tions.

Soiling losses represent a particularly challenging aspect
of performance modeling. Deceglie et al. [12] demon-
strated that soiling can reduce annual energy production
by 2%—6% in many environments, with significant seasonal
and geographic variations. Traditional models typically
apply a constant soiling loss factor based on location type,
failing to capture the dynamic nature of soiling accumula-
tion and removal.

Snow losses present similar challenges, with high geo-
graphic and seasonal variability that is difficult to predict
accurately. Harrison and Jiang [6] found that snow-
related losses explained approximately 25% of the winter
performance gap in their northern climate case study, high-
lighting the importance of location-specific modeling for
accurate predictions.

Mismatch losses due to manufacturing tolerance, non-
uniform soiling, or partial shading represent another
source of uncertainty. Meng et al. [12] found that even
among identical systems installed side-by-side, mismatch
effects could explain production differences of 1%-3%,
suggesting intrinsic variability that deterministic models
struggle to capture.

4.2.3. Degradation Patterns

Long-term degradation represents a critical factor for
lifetime energy predictions. Most performance models
assume linear degradation rates based on industry aver-
ages, typically 0.5%—-0.7% per year for crystalline silicon.
However, actual degradation patterns show significant
variability.

Jordan and Kurtz [14] conducted an extensive review of
degradation rates, finding median values of 0.5%—0.6% per
year but with a wide distribution ranging from 0.2% to
over 1% depending on technology, climate, and installation
quality. Importantly, they found that degradation is often
non-linear, with higher rates in the first year (light-induced
degradation) followed by a slower long-term trend.

Lindig et al. [1] established an international framework
for calculating performance loss rates from operational
data, revealing significant variations across different cli-
mates and technologies. Their work demonstrated that
standard degradation assumptions often fail to capture
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the complex interactions between technology, climate, and
installation quality that determine actual performance loss
rates.

4.3. Operational Domain

The operational domain encompasses factors related
to system operation, maintenance, and interaction with
the broader electrical infrastructure. Literature analysis
reveals several key factors in this domain that contribute
to performance gaps.

4.3.1. System Availability and Curtailment

System availability represents a significant source of
discrepancy between modeled and actual performance.
While performance models typically assume high avail-
ability (98%-99%), actual systems may experience more
frequent or longer outages due to component failures, grid
issues, or maintenance activities.

The IEA Report [8] noted that availability losses in com-
mercial systems typically range from 0.5% to 3% annually,
with higher values for systems with less robust monitoring
and maintenance programs. Importantly, availability losses
often cluster in high-irradiance periods due to inverter
thermal shutdown or grid-related curtailment, magnifying
their impact on annual energy production.

Curtailment due to grid constraints represents an
increasing challenge as PV penetration grows. Yang et al.
[25] highlighted that grid curtailment typically appears as a
performance gap in standard analysis, though it represents
an external constraint rather than a modeling error. Proper
accounting for curtailment events requires detailed oper-
ational logs often unavailable in simplified performance
assessments.

4.3.2. Inverter Performance

Inverter performance modeling presents unique chal-
lenges due to the non-linear efficiency curve and sensitivity
to operating conditions. Driesse et al. [23] demonstrated
that actual inverter efficiency curves can deviate sig-
nificantly from manufacturer specifications, particularly
under low-load conditions or extreme temperatures.

Most performance models use a weighted efficiency
metric (e.g., CEC or Euro efficiency) that may not accu-
rately reflect the actual operating profile at a specific
location. This simplified approach can introduce errors of
1%-2% in annual energy predictions, particularly for sys-
tems with atypical DC/AC ratios or operating in extreme
climates.

Clipping losses due to inverter power limitations rep-
resent another source of discrepancy, particularly for
systems with high DC/AC ratios designed to maximize
energy harvest in non-peak conditions. Accurate predic-
tion of clipping losses requires high-resolution irradiance
data to capture brief high-irradiance periods that may be
averaged out in hourly data.

4.3.3. Maintenance Practices

Maintenance practices significantly impact system
performance but are rarely incorporated explicitly
in performance models. Regular cleaning, vegetation
management, and proactive repairs can substantially
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Fig. 4. Categorization of performance gap contributing factors.

reduce performance gaps, while deferred maintenance
exacerbates them.

Deceglie et al. [12] demonstrated that cleaning frequency
significantly impacts annual soiling losses, with opti-
mized cleaning schedules potentially reducing these losses
by 30%-50% compared to calendar-based approaches.
Zuhaib et al. [17] found that proactive maintenance could
reduce annual performance losses by 1%-3%, with greater
impact in harsh environments where degradation acceler-
ates without proper intervention.

The challenge for performance modeling lies in predict-
ing future maintenance practices at the design stage. Most
models incorporate simplified assumptions about mainte-
nance frequency and effectiveness, which may not reflect
actual operational decisions driven by resource constraints
or changing economic conditions over the project lifetime.
Industry best practices for operation and maintenance
[28] provide guidance for optimizing these decisions, but
site-specific factors often require customized approaches.
As shown in Fig. 4, the categorization of performance
gap contributing factors reveals the relative distribution
of error sources across the three analytical domains, with
operational factors contributing approximately 0.5%—-3%
of total discrepancies.

4.4. Temporal Patterns in Performance Gaps

Temporal patterns in performance gaps provide valuable
insights for reconciliation approaches. Analysis of the lit-
erature reveals distinct patterns across different timescales,
from diurnal to inter-annual. The temporal patterns in
performance gaps are summarized in Table I11, which cat-
egorizes typical patterns across different timescales and

identifies the primary contributing factors for each tempo-
ral domain.

4.4.1. Diurnal Patterns

At the diurnal scale, performance gaps typically show
systematic patterns related to solar angle and temper-
ature effects. Harrison and Jiang [6] observed larger
morning/evening discrepancies compared to mid-day, with
models consistently overestimating performance at low
sun angles. This pattern suggests limitations in han-
dling incidence angle effects and low-irradiance inverter
performance.

Temperature-related performance gaps show the
opposite pattern, with models typically underestimating
temperature derating during peak irradiance hours.
Zuhaib et al. [17] found that standard temperature models
consistently underestimated module temperatures during
periods of high irradiance with low wind speeds, resulting
in overprediction of mid-day performance.

4.4.2. Seasonal Patterns

Seasonal patterns in performance gaps are particularly
pronounced in regions with distinct seasonal variations
in climate. Harrison and Jiang [6] found that winter per-
formance gaps in northern climates were 2-3 times larger
than summer gaps, primarily due to snow losses and low-
irradiance effects not adequately captured in models.

Soiling-related seasonal patterns vary by climate type.
In regions with distinct dry seasons, soiling effects pro-
gressively increase until the onset of rains, creating a
characteristic sawtooth pattern in performance ratios.
Deceglie et al. [12] developed a methodology to isolate

Vol 5 | Tssue 4 | August 2025



A Systematic Framework for Reconciling Solar Energy Production Models

Shah et al.

TABLE III: TEMPORAL PATTERNS IN PERFORMANCE GAPS

Temporal scale Typical pattern

Primary contributing factors

Reconciliation implications

Diurnal Large gaps at low sun angle

Seasonal Large winter gaps in temperature
climates
Annual cycle Progressive decline in performance
ratio until rainfall/ cleaning
Inter-Annual Deviation from linear degradation

assumptions

Incidence angle effects, low-irradiance
Snow losses, spectral effects,
temperature model limitations

Soiling accumulation, module

Non-linear degradation, climate

Improve angle-of-incidence modeling,
inverter performance refine inverter low-irradiance models
Develop climate-specific seasonal
correction factor
Implement dynamic soiling models with
degradation climate triggers
Replace linear degradation with

variability technology-specific models

TABLE IV: FRAMEWORK IMPLEMENTATION STAGES AND REQUIRMENTS

Implementation stage Key activities

Data requirements Expected outcomes

Initial assessment Performance gap quantification,
preliminary decomposition
Basic calibration Resource and system response
calibration for major factors
Comprehensive

calibration

Complete domain decomposition,
detailed parameter calibration
Operational integration Implementation of continuous

monitoring and adaptive calibration

Minimum 3 months operational data,
original model predictions

6-12 months operational data with

12+ months operational data, detailed

Ongoing performance and
meteorological data streams

Baseline performance gap metrics,
preliminary diagnosis
First-order corrected model, improved
short-term predictions
Fully calibrated model with
domain-specific adjustments

meteorological context

operational logs

Self-improving prediction system with
scenario-based forecasts

these patterns from performance data, enabling more accu-
rate characterization of seasonal soiling dynamics.

4.4.3. Inter-Annual Patterns

Inter-annual patterns in performance gaps provide
insights into long-term degradation and climate variability
effects. Jordan and Kurtz [14] found that actual degra-
dation rates often deviate from the linear assumptions
used in most performance models, with higher initial rates
followed by more gradual decline.

Climate variability introduces another source of inter-
annual variation. The IEA Report [8] noted that natural
climate cycles can cause year-to-year variations in solar
resource of 3%—8%, translating directly to energy yield
variations that may appear as performance gaps when
compared to TMY-based predictions.

4.5. Temporal Patterns in Performance Gaps

The financial implications of performance gaps extend
beyond simple energy production shortfalls. Detailed
analysis of the literature reveals several key impact path-
ways that affect project economics. Table [V outlines
the framework implementation stages and requirements,
showing how the reconciliation approach can be deployed
with varying levels of data availability and analytical
sophistication.

4.5.1. Revenue Impact

The direct revenue impact of performance gaps depends
on the project’s revenue structure. For projects with
fixed Power Purchase Agreements (PPAs), each percent-
age point of energy underperformance translates directly
to an equivalent percentage of revenue reduction. Kurtz
et al. [3] estimated that a 5% performance gap in a typical
utility-scale PV project represents approximately 3%-—4%
reduction in project Internal Rate of Return (IRR), poten-
tially threatening project viability in competitive markets.

Projects with merchant revenue models or capacity-
based payment structures experience more complex

financial impacts. Yang et al. [25] noted that performance
gaps during high-price periods have disproportionate
revenue impacts, highlighting the importance of time-of-
delivery performance accuracy for financial projections.

4.5.2. Financing Impact

Performance gaps significantly impact project financ-
ing through risk perception and required returns. The
IEA Report [8] highlighted that financing entities typically
apply risk adjustments to energy yield predictions based on
perceived uncertainty, with higher uncertainty translating
to larger contingency reserves and higher financing costs.

Traditional P90 statistical approaches attempt to quan-
tify this uncertainty but typically assume normally
distributed, independent performance variations. Reich
et al. [7] demonstrated that these assumptions often
underestimate actual performance risk, particularly for
systematic biases that persist across multiple years.

4.5.3. Long-term Valuation Impact

Performance gaps impact long-term asset valuation and
secondary market transactions. System underperformance
relative to original projections typically triggers valuation
adjustments during refinancing or acquisition, potentially
creating significant financial losses for original investors.

The IEA Report [8] noted that secondary mar-
ket transactions increasingly incorporate performance
reconciliation assessments to establish new baseline
expectations, with systems demonstrating consistent
underperformance experiencing valuation discounts of
5%—15% depending on the severity and understood
causes of the performance gap. The financial impact
pathways of performance gaps are illustrated in Fig. 5,
demonstrating how technical discrepancies translate into
primary, secondary, and tertiary economic consequences
for project stakeholders.
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Fig. 5. Financial impact pathways of performance gaps.

5. PROPOSED RECONCILIATION FRAMEWORK
5.1. Framework Overview

Based on our analysis of performance gap factors and
existing reconciliation approaches, we propose a compre-
hensive framework for reconciling modeled predictions
with operational data. The framework incorporates three
key components: (1) structured performance gap decom-
position, (2) model calibration methodology, and (3)
forward prediction adjustment.

The proposed framework is designed to address the lim-
itations of existing approaches while incorporating their
strengths. Unlike single-factor correction approaches, our
framework provides a systematic methodology for iden-
tifying and addressing multiple sources of discrepancy
simultaneously. The modular structure allows implemen-
tation with varying levels of data availability, making
it applicable across diverse operational contexts. Fig. 6
provides an overview of the proposed reconciliation frame-
work, showing the integration of performance data,
meteorological inputs, and operational logs through struc-
tured decomposition and model calibration processes.

5.2. Structured Performance Gap Decomposition

The first component of our framework involves
structured decomposition of observed performance
gaps into domain-specific components using statistical
pattern recognition and physical insights. This decom-
position enables targeted corrections rather than generic
adjustments.

5.2.1. Resource Domain Decomposition

For the resource assessment domain, we adapt the
methodology proposed by Yagli et al. [16] to iden-
tify systematic biases in resource data. The approach
involves comparing observed performance patterns with
expected response to standardized weather variables, iso-
lating resource-related discrepancies from system-specific
effects.

Key metrics for resource domain decomposition
include:

e Irradiance Bias Index (IBI): Quantifies the sys-
tematic bias in irradiance estimates by comparing
the ratio of measured to modeled performance
across different irradiance bins, normalizing for
other effects.

IBI = (1/N) x Zi[(Pmeasured, i/ Pmodeled, i)
x (Gmodeled, i/ Gmeasured, i)]

where

N-number of data points

Pmeasured, i-measured power at time i
Pmodeled, i-modeled power at time i
Gmodeled, i—-modeled irradiance at time 1
Gmeasured, i-measured irradiance at time i

e Temporal Pattern Correlation (TPC): Assesses the
alignment between predicted and actual perfor-
mance patterns at different timescales (hourly,
daily, monthly), helping identify temporal resolu-
tion limitations.

For each timescale 7 (hourly, daily, monthly):

TPCt = corr (Pmeasured, t, Pmodeled, t)
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where

Pmeasured, t—aggregated measured performance at
timescale t

Pmodeled, t-aggregated modeled performance at

timescale t

e Clear Sky Deviation Metric (CSDM): Tsolates
resource assessment errors by examining perfor-
mance only during clear sky conditions when
system response is most predictable:

CSDM = median[(Pmeasured, cs/ Pmodeled, cs)
|kt > 0.65]

where

Pmeasured, cs—measured power during clear sky condi-
tions

Pmodeled, cs—modeled power during clear sky conditions
kt—clearness index threshold for clear sky identification

5.2.2. System Response Domain Decomposition

For the system response domain, we build on the
methodology developed by Deceglie et al. [12] for soil-
ing loss extraction, extending it to other system-specific
factors. The approach uses pattern recognition to identify
characteristic signatures of different loss mechanisms.

Key techniques for system response decomposition
include:

e Temperature Response Analysis: Isolates tempera-
ture model errors by examining the relationship
between ambient temperature and performance
ratio deviations, controlling for irradiance effects:

TRE = B; — Bmodel

where B is derived from regression:
PR = By + B1 (Tmodule — TSTC) + ¢

e Soiling Signature Extraction: Identifies soiling pat-
terns through analysis of performance trends
during dry periods and step changes following pre-
cipitation events.

For dry periods between cleaning events:
SRdaily = —dPR/dt|precipitation = 0

where
PR-Performance Ratio
t—time in days

e Degradation Trend Analysis: Separates long-term
degradation from seasonal and operational varia-
tions using statistical filtering techniques.

5.2.3. Operational Domain Decomposition

For the operational domain, we focus on identifying
discrete events and operational patterns that impact per-
formance. This component relies heavily on operational
metadata and performance time series analysis.

Key approaches for operational domain decomposition
include:

e Availability Event Detection: Identifies system
downtime and partial availability events through
statistical analysis of performance time series,
flagging periods with anomalous performance
patterns.

e Inverter Clipping Detection: Quantifies inverter
clipping losses by identifying characteristic
plateaus in power output during high-irradiance
periods.
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e Curtailment Pattern Recognition: Distinguishes
grid curtailment from performance issues by iden-
tifying characteristic patterns and correlating with
grid data when available.

5.3. Model Calibration Methodology

The second component of our framework involves sys-
tematic calibration of model parameters based on the
decomposed performance gap analysis. This calibration
process adjusts specific model components rather than
applying generic correction factors.

5.3.1. Resource Model Calibration

For resource model calibration, we propose a site-
specific correction approach that addresses systematic
biases while preserving the statistical properties of the
resource data. The methodology includes:

e [Irradiance Scaling Factors: Adjusts irradiance esti-
mates based on the observed Irradiance Bias Index,
with separate factors for different sky conditions
(clear, partly cloudy, overcast).

e Decomposition Model Adjustment: Calibrates the
diffuse fraction model based on observed perfor-
mance patterns at different sun angles, improving
plane-of-array translation accuracy.

e Temporal Pattern Alignment: Adjusts the temporal
distribution of irradiance to better match observed
performance patterns, addressing temporal resolu-
tion limitations.

5.3.2. System Response Model Calibration

For system response model calibration, we focus on
adjusting specific loss factors and performance parameters
based on operational data. Key calibration targets include:

o Module Temperature Model: Adjusts temperature
coefficients and thermal parameters based on
observed temperature response analysis, improving
accuracy across different operating conditions.

e Soiling Loss Model: Develops site-specific soil-
ing accumulation and removal models based on
extracted soiling signatures, capturing seasonal and
weather-dependent patterns.

e Degradation Model: Replaces simplified linear
degradation assumptions with calibrated models
based on observed degradation trends, potentially
incorporating non-linear components.

5.3.3. Operational Model Calibration

For operational model calibration, we focus on improv-
ing the representation of operational factors based on
observed patterns. Key aspects include:

o Availability Model: Calibrates availability assump-
tions based on historical patterns, potentially
incorporating seasonal variations or correlation
with weather events.

A Systematic Framework for Reconciling Solar Energy Production Models

e Inverter Performance Model: Refines inverter effi-
ciency curves and clipping behavior based on
operational data, improving accuracy across the
operating range.

e Maintenance Impact Model: Develops predictive
models for maintenance effects based on historical
patterns, enabling more accurate long-term perfor-
mance projections.

5.4. Forward Prediction Adjustment

The third component of our framework involves apply-
ing calibrated models to improve forward predictions while
accounting for inherent uncertainties. This component
addresses the critical need for accurate future performance
projections rather than simply explaining historical dis-
crepancies.

5.4.1. Scenario-Based Prediction

Rather than producing deterministic point forecasts, our
framework employs a scenario-based approach that cap-
tures the range of plausible outcomes. This methodology
includes:

e Scenario Definition: Develops multiple scenarios
representing different combinations of resource
conditions, system response, and operational
factors.

e Probability — Assignment: Assigns probability
weights to each scenario based on historical
patterns and calibrated model uncertainties.

e Aggregated Prediction: Combines scenario results
into probabilistic forecasts with explicit confidence
intervals, providing more nuanced information for
decision-making.

5.4.2. Uncertainty Quantification

Our framework incorporates explicit uncertainty quan-
tification throughout the prediction process, addressing
the limitations of traditional P50/P90 approaches. Key
aspects include:

e Domain-Specific Uncertainty: Quantifies uncer-
tainty components for each domain (resource,
system, operational) separately before combining
into aggregate metrics.

e Correlation Modeling: Accounts for correlations
between different uncertainty sources, avoiding the
underestimation that occurs when assuming inde-
pendence.

e Confidence Interval Calculation: Provides more
accurate confidence intervals based on cali-
brated uncertainty models rather than generic
assumptions.

5.4.3. Continuous Improvement Process

The framework incorporates a continuous improvement
process that updates calibrations as new operational data
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TABLE V: FRAMEWORK CAPABILITY UNDER DIFFERENT DATA AVAILABILITY SCENARIOS

Data availability scenario Resource domain capability

System response domain capability ~ Operational domain capability

Full calibration with uncertainty
quantification

Comprehensive data

Basic bias correction with higher
uncertainty

Limited meteorological data
Missing operational logs Full resource calibration
Simplified aggregate calibration
without domain-specific
adjustments

Production data only

Complete operational model
calibration

Detailed loss factor decomposition
and calibration
Limited operational pattern
recognition

Simplified loss decomposition with
combined factors

Detailed system response calibration — Basic availability detection only

Combined calibration without Minimal operational insights

factor isolation

becomes available. This aspect is particularly important for
long-term performance optimization:

e Performance Monitoring: Continuously compares
actual performance with predictions, identifying
emerging discrepancies.

e Incremental Calibration: Updates model parame-
ters based on new data without requiring complete
recalibration.

e Learning System: Accumulates knowledge about
site-specific patterns, progressively improving pre-
diction accuracy over time.

5.5. Practical Implementation Considerations

Practical implementation of the reconciliation
framework requires consideration of data availabil-
ity, computational requirements, and integration with
existing workflows. Our analysis identifies several key
considerations for effective implementation.

5.5.1. Data Requirements

The framework’s effectiveness depends critically on data
quality and completeness. Minimum data requirements
include:

e Performance Data: Revenue-grade production
measurements at hourly or sub-hourly resolution,
ideally with inverter-level granularity.

e Meteorological Data: On-site measurements of
global horizontal irradiance, plane-of-array irradi-
ance (where available), ambient temperature, and
wind speed.

e Operational Logs. Records of outages, maintenance
activities, and grid curtailment events.

The framework is designed to function with varying levels
of data completeness, with degraded but still valuable func-
tionality when certain elements are unavailable. As detailed
in Table V, the framework’s capability adapts to different
data availability scenarios, maintaining core functionality
even when certain data streams are unavailable.

5.5.2. Integration with Existing Systems

Integration with existing performance monitoring and
asset management systems represents a critical consid-
eration for practical implementation. The framework is
designed with a modular architecture that facilitates inte-
gration through several pathways:

e Data Connectors: Standardized interfaces for
extracting performance and meteorological data
from common monitoring platforms.

e Calibration Services: API-based services that
perform specific calibration functions without
requiring full system implementation.

e Visualization Components: Standardized outputs
for integration with existing dashboards and
reporting tools.

This approach enables gradual implementation with-
out requiring wholesale replacement of existing systems,
reducing adoption barriers while still providing substantial
benefits.

5.5.3. Cost-Benefit Considerations

The economic value of implementing the reconciliation
framework varies depending on project scale, performance
issues, and financial structure. Our analysis suggests sev-
eral key considerations for cost-benefit assessment:

e Project Scale Effects: Implementation costs scale
sub-linearly with project size, making the frame-
work more economically viable for larger systems
or portfolios.

e Performance Gap Magnitude: Economic benefits
increase with the magnitude of existing perfor-
mance gaps, as larger improvements yield greater
financial returns.

e Revenue  Structure Impacts: Projects with
performance-based revenue structures (e.g., mer-
chant plants or performance guarantees) typically
realize greater economic benefits from improved
predictions.

Initial implementation typically requires 2-4 weeks of
analyst time plus ongoing monitoring costs, with payback
periods ranging from 6-24 months depending on project
specifics. For large portfolios, economies of scale can sig-
nificantly improve the cost-benefit ratio through shared
implementation resources.

5.5.4. Illustrative Example: 50 MW Utility-Scale PV

System

To demonstrate the practical application of our reconcil-
iation framework, we present an illustrative example based
on typical performance patterns observed in utility-scale
PV systems:

System Characteristics

e Capacity: 50 MW DC (40 MW AC)
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e Location: Southwestern United States (high desert
climate)

e Technology: Crystalline silicon modules with
single-axis tracking

e Operational Period: 24 months

o Initial Performance Gap: —6.2% (annual basis)

Step 1: Performance Gap Decomposition

Using the framework’s decomposition methodology, the
initial 6.2% gap was attributed to:

Resource Assessment Domain (2.1%)

e Irradiance Bias Index: 0.97 (3% underestimation)

e Clear Sky Deviation Metric: 1.02 (2% overestima-
tion during clear conditions)

e Net resource contribution: —2.1%

System Response Domain (2.8%)

e Temperature model error: —1.2% (underestimated
operating temperatures)

e Soiling losses: —1.1% (constant 2% assumed vs.
3.1% measured average)

o Initial module deviation: —0.5% (flash test vs.
nameplate)

Operational Domain (1.3%)

e Availability: —0.8% (97.5% actual vs. 98.5% mod-
eled)

e Inverter clipping: —0.3% (underestimated due to
hourly data resolution)

e Grid curtailment: —0.2% (not originally modeled)

Step 2: Model Calibration
Based on the decomposition results, the following cali-
brations were applied:

1. Resource Calibration:

e Adjusted diffuse fraction model with site-
specific coefficients

e Implemented clearness
scaling factors

index-dependent

2. System Response Calibration:

e Updated temperature model parameters (Uc
=25 W/m?K, Uv = 1.5 W-s/m*K)

e Developed monthly soiling factors based on
observed patterns

e Applied —0.5% adjustment to module power
rating

3. Operational Calibration:

e Revised availability to 97.5% with seasonal
variation

e Refined inverter model with sub-hourly clip-
ping estimation

Step 3: Results
After calibration:

e Year 1 Retrospective: MAE reduced from 6.2% to
1.8%

e Year 2 Prediction: Initial gap of 5.8% reduced to
2.1%

A Systematic Framework for Reconciling Solar Energy Production Models

e Uncertainty Bounds: P90 confidence interval nar-
rowed from +4.5% to £2.8%

Key Insights

1. Dominant Factors: System response factors (partic-
ularly temperature and soiling) contributed most
significantly to the performance gap in this desert
environment.

2. Temporal Patterns: Soiling showed strong seasonal
accumulation with 4-5 discrete cleaning events
annually from rainfall.

3. Calibration Impact: The framework reduced predic-
tion error by 71% while providing actionable insights
for O&M optimization.

This example illustrates how the framework systemati-
cally identifies, quantifies, and corrects performance gap
sources, leading to substantially improved prediction accu-
racy and operational insights.

6. CONCLUSION AND FUTURE RESEARCH

6.1. Summary of Key Findings

This study has examined the persistent gap between
predicted and actual performance in photovoltaic systems,
developing a comprehensive framework for analyzing and
reconciling these discrepancies. Our analysis reveals several
key findings that advance the understanding of perfor-
mance gaps and provide pathways for improvement.

First, performance gaps are multi-factorial and domain-
specific, requiring structured approaches to decomposition
and reconciliation. Our analysis demonstrates that
resource assessment, system response, and operational
factors all contribute significantly to observed discrepan-
cies, with their relative importance varying by location,
technology, and operational context. This complexity
explains why simplified correction approaches often fail to
provide lasting improvements.

Second, temporal patterns in performance gaps pro-
vide valuable diagnostic insights that can guide targeted
reconciliation efforts. Diurnal, seasonal, and inter-annual
patterns reflect different underlying mechanisms that
require specific analytical approaches and correction
methodologies. The temporal signature of performance
gaps often reveals more about their causes than aggregate
metrics alone.

Third, existing modeling approaches incorporate simpli-
fications and assumptions that systematically contribute to
performance gaps. These include idealized soiling patterns,
linear degradation assumptions, simplified temperature
models, and generalized loss factors that fail to capture
site-specific conditions. While these simplifications are
often necessary for tractable modeling, they must be rec-
ognized and addressed through calibration processes.

Finally, effective reconciliation requires a structured
methodology that addresses multiple domains simulta-
neously while preserving their interdependencies. Our
proposed framework demonstrates that systematic decom-
position, model calibration, and forward prediction
adjustment can significantly improve alignment between
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modeled and actual performance, enhancing both techni-
cal accuracy and financial reliability.

6.2. Practical Implications

The practical implications of this research extend across
the PV project lifecycle, from initial development through
long-term operation and financial transactions.

For project developers, the reconciliation framework
provides a methodology for more accurate energy yield
predictions that reduce financial risk and improve compet-
itiveness. By identifying and addressing systematic biases
in performance models, developers can avoid the costly
consequences of energy shortfalls and strengthen stake-
holder confidence in project projections.

For system operators, the framework offers a structured
approach to performance optimization that goes beyond
simple monitoring. By decomposing performance gaps
into specific contributing factors, operators can priori-
tize interventions that deliver the greatest improvement
in energy production and financial returns. The continu-
ous calibration aspect ensures that models remain aligned
with actual performance as systems age and operating
conditions evolve.

For financial stakeholders, the improved prediction
accuracy and explicit uncertainty quantification enhance
risk assessment and valuation processes. More reliable
performance projections reduce the need for conservative
risk adjustments, potentially lowering financing costs and
improving project economics. The structured nature of the
reconciliation process also provides greater transparency
for due diligence and asset transactions.

For the broader industry, standardizing approaches
to performance gap analysis and reconciliation creates
opportunities for improved benchmarking and knowl-
edge sharing. As more projects implement structured
reconciliation methodologies, collective understanding of
performance factors will improve, driving further refine-
ments in modeling approaches and industry standards.

6.3. Limitations and Future Research

While the proposed framework addresses many limita-
tions of existing approaches, several areas require further
research and development.

First, the framework relies on statistical decomposition
techniques that have inherent limitations in distinguish-
ing between overlapping effects. Future research should
explore advanced pattern recognition approaches, poten-
tially incorporating machine learning techniques, to
improve the separation of concurrent factors affecting
performance.

Second, the current approach to uncertainty quantifi-
cation focuses primarily on technical factors rather than
operational decisions. Future work should develop more
sophisticated models for predicting maintenance practices,
replacement schedules, and other operational interven-
tions that significantly impact long-term performance.

Third, the validation methodology employed in this
study relies primarily on published case studies rather than
comprehensive empirical testing. Future research should
implement the framework across diverse utility-scale sys-
tems to assess its effectiveness in different contexts and
refine the methodology based on practical experience.
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Fourth, the increasing deployment of bifacial mod-
ules, tracking systems, and storage-coupled PV presents
new modeling challenges not fully addressed in the cur-
rent framework. Future extensions should incorporate
these technologies, developing specific decomposition and
calibration techniques for their unique performance char-
acteristics.

Finally, the framework currently focuses on reconciling
predictions with historical performance rather than opti-
mizing future decisions. An important direction for future
research is the integration of reconciliation methodolo-
gies with operational optimization algorithms to maximize
energy production and financial returns throughout the
project lifecycle.

In conclusion, this research contributes to bridging the
gap between predicted and actual performance in PV
systems, providing both analytical insights and practical
methodologies. By systematically addressing the com-
plex factors that create performance discrepancies, the
proposed framework advances the industry’s capacity
for accurate energy yield prediction and long-term per-
formance optimization. As utility-scale PV deployment
continues to accelerate globally, improved reconciliation
approaches will play an increasingly important role in
ensuring that these systems deliver their expected energy
and financial benefits.
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